Dubai Telegraph - Satellites link rain, drought intensity to global warming

EUR -
AED 4.100541
AFN 77.413379
ALL 99.399129
AMD 432.522876
ANG 2.01379
AOA 1036.582754
ARS 1074.840314
AUD 1.638402
AWG 2.009533
AZN 1.897724
BAM 1.956408
BBD 2.256061
BDT 133.531523
BGN 1.965931
BHD 0.42069
BIF 3238.849139
BMD 1.116407
BND 1.442823
BOB 7.721263
BRL 6.056951
BSD 1.117427
BTN 93.461652
BWP 14.702308
BYN 3.656772
BYR 21881.580359
BZD 2.25225
CAD 1.514613
CDF 3205.205045
CHF 0.946283
CLF 0.037662
CLP 1039.219035
CNY 7.873799
CNH 7.872619
COP 4650.114928
CRC 578.833333
CUC 1.116407
CUP 29.58479
CVE 110.296334
CZK 25.090913
DJF 198.97831
DKK 7.459754
DOP 67.075451
DZD 147.825397
EGP 54.173877
ERN 16.746107
ETB 128.596137
FJD 2.455869
FKP 0.85021
GBP 0.83926
GEL 3.047887
GGP 0.85021
GHS 17.599236
GIP 0.85021
GMD 76.474898
GNF 9654.915838
GTQ 8.637454
GYD 233.728494
HKD 8.699742
HNL 27.718371
HRK 7.590465
HTG 147.253152
HUF 394.292293
IDR 16913.28939
ILS 4.20618
IMP 0.85021
INR 93.316901
IQD 1463.742058
IRR 46992.371728
ISK 152.289464
JEP 0.85021
JMD 175.553018
JOD 0.791199
JPY 160.503655
KES 144.139301
KGS 94.085197
KHR 4535.288434
KMF 492.726608
KPW 1004.765812
KRW 1489.013615
KWD 0.340571
KYD 0.931181
KZT 535.171625
LAK 24673.45152
LBP 100061.122739
LKR 340.132722
LRD 223.475489
LSL 19.46858
LTL 3.29646
LVL 0.675304
LYD 5.32256
MAD 10.836176
MDL 19.498889
MGA 5034.475344
MKD 61.633614
MMK 3626.046911
MNT 3793.551484
MOP 8.970209
MRU 44.231754
MUR 51.22014
MVR 17.147489
MWK 1937.559121
MXN 21.703614
MYR 4.686123
MZN 71.282382
NAD 19.46858
NGN 1830.829635
NIO 41.122419
NOK 11.727561
NPR 149.530444
NZD 1.789646
OMR 0.429775
PAB 1.117427
PEN 4.194911
PGK 4.43634
PHP 62.087309
PKR 310.770571
PLN 4.277173
PYG 8722.55613
QAR 4.073657
RON 4.974597
RSD 117.085453
RUB 103.966336
RWF 1504.840991
SAR 4.189301
SBD 9.273924
SCR 15.205395
SDG 671.516557
SEK 11.363724
SGD 1.441756
SHP 0.85021
SLE 25.506892
SLL 23410.494226
SOS 638.592859
SRD 33.328128
STD 23107.374219
SVC 9.776953
SYP 2805.006413
SZL 19.453701
THB 36.873802
TJS 11.877787
TMT 3.907425
TND 3.384361
TOP 2.614734
TRY 38.083886
TTD 7.595294
TWD 35.710288
TZS 3046.342404
UAH 46.304169
UGX 4149.215921
USD 1.116407
UYU 45.903041
UZS 14235.29914
VEF 4044243.591204
VES 41.033447
VND 27452.452093
VUV 132.542101
WST 3.123107
XAF 656.149283
XAG 0.035721
XAU 0.000428
XCD 3.017146
XDR 0.828143
XOF 656.149283
XPF 119.331742
YER 279.464658
ZAR 19.611015
ZMK 10049.009427
ZMW 29.079391
ZWL 359.48265
  • CMSC

    0.0650

    25.12

    +0.26%

  • NGG

    -1.2200

    68.83

    -1.77%

  • BCC

    7.6300

    144.69

    +5.27%

  • CMSD

    0.0300

    25.01

    +0.12%

  • RIO

    2.2700

    65.18

    +3.48%

  • BTI

    -0.3100

    37.57

    -0.83%

  • SCS

    -0.8000

    13.31

    -6.01%

  • BP

    0.3300

    32.76

    +1.01%

  • RBGPF

    60.5000

    60.5

    +100%

  • RYCEF

    -0.0200

    6.93

    -0.29%

  • BCE

    -0.4200

    35.19

    -1.19%

  • JRI

    -0.0400

    13.4

    -0.3%

  • GSK

    -0.8100

    41.62

    -1.95%

  • RELX

    0.7600

    48.13

    +1.58%

  • AZN

    0.3200

    78.9

    +0.41%

  • VOD

    -0.1700

    10.06

    -1.69%

Satellites link rain, drought intensity to global warming
Satellites link rain, drought intensity to global warming / Photo: Alfredo ZUNIGA - UNICEF/AFP

Satellites link rain, drought intensity to global warming

The intensity of extreme water cycle events -- especially drought and precipitation or flooding -- correlates strongly with a continuing rise in global temperatures, according to a study published Monday.

Text size:

Applying a novel method, researchers used satellite observations to quantify and rank more than a thousand extreme weather events over the last 20 years that have up to now defied easy measurement.

Rainfall and soil moisture -- or the lack of it -- have previously been the main yardstick for assessing intensity.

"Warm air increases evaporation so that more water is lost during droughts, and warm air also holds and transports more moisture, increasing precipitation during wet events," co-author Matthew Rodell of NASA told AFP.

"So what we are seeing –- greater intensity of extreme wet and dry events as the world warms -– makes sense."

Since 2015, the frequency of the highest category extreme events has increased to four per year, compared to three per year over the previous 13 years, the study reported.

The scientists were nonetheless surprised at how closely the pace of global warming tracked with the intensity of disruptions in the water cycle.

The impact was even stronger than naturally occurring El Nino and La Nina weather phenomena, they reported in the journal Nature Water.

The findings leave little doubt that increasing temperatures will cause more frequent, widespread and severe droughts and precipitation events in the future.

Earth's surface has warmed, on average, 1.2 degrees Celsius since the late 19th century, and -- on current policies -- is on track to heat up 2.8C above that benchmark by 2100.

By far the largest extreme event of the past 20 years was a sustained deluge over central Africa that "dwarfed" all the others measured.

- Bracing for worse -

It caused Lake Victoria to rise by over a metre (3.3 feet) and was still ongoing in 2021 when the study concluded.

"It's probable that the string of top-ten warmest years (2015-2023) is helping to sustain these ongoing events longer than they would have under more normal global temperature conditions," said Rodell.

About 70 percent of the events measured lasted six months or less, with an average duration of five to six months.

Roughly a third of the top 30 wet and dry events globally occurred in South America. More broadly, the correlations were particularly strong in tropical climates.

The most intense dry event registered happened in the Amazon during the hottest year on record.

The research offers concrete support for the IPCC's most recent assessment report, which found that the severity of extreme water cycle events is increasing.

Extreme droughts and floods are ranked as some of the world's worst disasters with huge impacts for the economy, agriculture and society.

Tropical cyclone Freddy made a loop rarely seen by meteorologists when it returned to hit Mozambique for a second time on Monday, killing at least 70 people in Malawi and Mozambique and displacing thousands.

It is on track to be named the longest cyclone on record after its initial landfall in late February.

"The conclusion of this study suggests that preparation and adaptation will be that much more important in the future," said Rodell.

G.Mukherjee--DT