Dubai Telegraph - Click chemistry, Nobel-winning science that may 'change the world'

EUR -
AED 3.84909
AFN 70.983076
ALL 98.168084
AMD 408.033489
ANG 1.877746
AOA 956.772304
ARS 1045.934567
AUD 1.608014
AWG 1.888917
AZN 1.780997
BAM 1.956142
BBD 2.103608
BDT 124.501747
BGN 1.96788
BHD 0.392672
BIF 3077.56693
BMD 1.047943
BND 1.404259
BOB 7.239401
BRL 6.098928
BSD 1.041892
BTN 88.430422
BWP 14.233758
BYN 3.409661
BYR 20539.683689
BZD 2.100107
CAD 1.461529
CDF 3008.644792
CHF 0.933707
CLF 0.036935
CLP 1019.137039
CNY 7.592031
CNH 7.595984
COP 4600.207983
CRC 530.697762
CUC 1.047943
CUP 27.770491
CVE 110.899218
CZK 25.334232
DJF 185.535949
DKK 7.457456
DOP 62.791567
DZD 139.877767
EGP 51.749446
ERN 15.719146
ETB 127.546696
FJD 2.385066
FKP 0.827159
GBP 0.83215
GEL 2.871065
GGP 0.827159
GHS 16.552662
GIP 0.827159
GMD 74.404001
GNF 8980.654359
GTQ 8.08725
GYD 219.183481
HKD 8.154967
HNL 26.32885
HRK 7.475249
HTG 136.765194
HUF 411.595345
IDR 16624.306486
ILS 3.879155
IMP 0.827159
INR 88.307488
IQD 1364.864451
IRR 44092.203499
ISK 146.344923
JEP 0.827159
JMD 165.980576
JOD 0.743093
JPY 161.794551
KES 135.676997
KGS 90.649326
KHR 4194.772734
KMF 495.143365
KPW 943.148344
KRW 1467.769713
KWD 0.322609
KYD 0.868268
KZT 520.220796
LAK 22885.434193
LBP 93300.07746
LKR 303.238754
LRD 189.101446
LSL 18.801143
LTL 3.094303
LVL 0.63389
LYD 5.087986
MAD 10.539574
MDL 19.003682
MGA 4862.942225
MKD 61.540749
MMK 3403.678134
MNT 3560.910412
MOP 8.353519
MRU 41.455637
MUR 49.074871
MVR 16.201526
MWK 1806.650049
MXN 21.359806
MYR 4.668554
MZN 66.973635
NAD 18.801143
NGN 1769.410365
NIO 38.337062
NOK 11.559514
NPR 140.70592
NZD 1.790636
OMR 0.401068
PAB 1.047692
PEN 3.95069
PGK 4.194773
PHP 61.7584
PKR 289.326398
PLN 4.334357
PYG 8133.57593
QAR 3.820851
RON 4.978251
RSD 117.724856
RUB 108.694151
RWF 1422.262
SAR 3.934395
SBD 8.785488
SCR 14.270629
SDG 630.340687
SEK 11.508746
SGD 1.410154
SHP 0.827159
SLE 23.819809
SLL 21974.846653
SOS 595.409683
SRD 37.195668
STD 21690.30525
SVC 9.116766
SYP 2632.988191
SZL 18.794642
THB 36.22582
TJS 11.157609
TMT 3.667801
TND 3.328435
TOP 2.454385
TRY 36.218374
TTD 7.076236
TWD 34.002924
TZS 2777.049042
UAH 43.103352
UGX 3871.138521
USD 1.047943
UYU 44.554803
UZS 13366.334712
VES 48.817231
VND 26630.85264
VUV 124.413904
WST 2.925428
XAF 656.077858
XAG 0.034259
XAU 0.000393
XCD 2.832119
XDR 0.792554
XOF 656.077858
XPF 119.331742
YER 261.90718
ZAR 18.9268
ZMK 9432.745885
ZMW 28.781577
ZWL 337.437233
  • SCS

    0.2300

    13.27

    +1.73%

  • BCC

    3.4200

    143.78

    +2.38%

  • GSK

    0.2600

    33.96

    +0.77%

  • RBGPF

    59.2400

    59.24

    +100%

  • AZN

    1.3700

    65.63

    +2.09%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • CMSC

    0.0320

    24.672

    +0.13%

  • RIO

    -0.2200

    62.35

    -0.35%

  • NGG

    1.0296

    63.11

    +1.63%

  • CMSD

    0.0150

    24.46

    +0.06%

  • BCE

    0.0900

    26.77

    +0.34%

  • RELX

    0.9900

    46.75

    +2.12%

  • VOD

    0.1323

    8.73

    +1.52%

  • JRI

    -0.0200

    13.21

    -0.15%

  • BTI

    0.4000

    37.38

    +1.07%

  • BP

    0.2000

    29.72

    +0.67%

Click chemistry, Nobel-winning science that may 'change the world'
Click chemistry, Nobel-winning science that may 'change the world' / Photo: ANDREW SILK - AFP/File

Click chemistry, Nobel-winning science that may 'change the world'

The Nobel Chemistry Prize was awarded to three scientists on Tuesday for their work on click chemistry, a way to snap molecules together like Lego that experts say will soon "change the world".

Text size:

But how exactly does it work?

Imagine two people walking through a mostly empty room towards each other then shaking hands.

"That's how a classical chemical reaction is done," said Benjamin Schumann, a chemist at Imperial College, London.

But what if there was lots of furniture and other people clogging up the room?

"They might not meet each other," Schumann said.

Now imagine those people were molecules, tiny groups of atoms that form the basis of chemistry.

"Click chemistry makes it possible for two molecules that are in an environment where you have lots of other things around" to meet and join with each other, he told AFP.

The way click chemistry snaps together molecular building blocks is also often compared to Lego.

But Carolyn Bertozzi, who shared this year's chemistry Nobel with Barry Sharpless and Morten Meldal, said it would take a very special kind of Lego.

Even if two Legos were "surrounded by millions of other very similar plastic toys" they would only click in to each other, she told AFP.

- 'Changed the playing field' -

Around the year 2000, Sharpless and Meldal separately discovered a specific chemical reaction using copper ions as a catalyst which "changed the playing field" and became "the cream of the crop", said Silvia Diez-Gonzalez, a chemist at the Imperial College, London.

Copper has many advantages, including that reactions could involve water and be done at room temperature rather than at high heat which can complicate matters.

This particular way of connecting molecules was far more flexible, efficient and targeted than had ever been possible before.

Since its discovery, chemists have been finding out all the different kinds of molecular architecture they can build with their special new Lego blocks.

"The applications are almost endless," said Tom Brown, a British chemist at Oxford University that has worked on DNA click chemistry.

But there was one problem with using copper as a catalyst. It can be toxic for the cells of living organisms -- such as humans.

So Bertozzi built on the foundations of Sharpless and Meldal's work, designing a copperless "way of using click chemistry with biological systems without killing them," Diez-Gonzalez said.

Previously the molecules clicked together in a straight flat line -- like a seat belt -- but Bertozzi discovered that forcing them "to be a bit bent" made the reaction more stable, Diez-Gonzalez said.

Bertozzi called the field she created bioorthogonal chemistry -- orthogonal means intersecting at right angles.

- 'Tip of the iceberg' -

Diez-Gonzalez said she was "a bit surprised" that the field had been awarded with a Nobel so soon, because "there are not that many commercial applications out there yet".

But the future looks bright.

"We're kind of at the tip of the iceberg," said American Chemical Society President Angela Wilson, adding that this "chemistry is going to change the world."

Bertozzi said that there are so many potential uses for click chemistry, that "I can't even really enumerate them".

One use is for developing new targeted medicines, some of which could involve "doing chemistry inside human patients to make sure that drugs go to the right place," she told the Nobel conference.

Her lab has started research on potential treatments for severe Covid, she added.

Another hope is that it can lead to a more targeted way to diagnose and treat cancer, as well make chemotherapy have fewer, less severe side effects.

It has even created a way to make the bacteria that causes Legionnaires' disease become fluorescent so it easier to spot in water supplies.

Already, click chemistry has been used "to create some very, very durable polymers" that protect against heat, as well as in forms of glue in nano-chemistry, Meldal told AFP.

 

"I think it's going to completely revolutionise everything from medicine to materials," she said.

R.Mehmood--DT