Dubai Telegraph - An overview of NASA's Artemis 1 mission to the Moon

EUR -
AED 3.865039
AFN 71.961868
ALL 97.885367
AMD 409.705534
ANG 1.898038
AOA 960.733931
ARS 1055.061215
AUD 1.613881
AWG 1.894109
AZN 1.787029
BAM 1.951539
BBD 2.126437
BDT 125.855234
BGN 1.956342
BHD 0.396578
BIF 3110.579445
BMD 1.052283
BND 1.414399
BOB 7.293078
BRL 6.086683
BSD 1.053191
BTN 88.848028
BWP 14.387453
BYN 3.446543
BYR 20624.740218
BZD 2.122845
CAD 1.469502
CDF 3014.78969
CHF 0.929776
CLF 0.037101
CLP 1023.776253
CNY 7.619996
CNH 7.625593
COP 4626.455438
CRC 534.824751
CUC 1.052283
CUP 27.885491
CVE 110.024795
CZK 25.350861
DJF 187.538784
DKK 7.458788
DOP 63.520417
DZD 140.573397
EGP 52.274979
ERN 15.78424
ETB 131.306162
FJD 2.388363
FKP 0.830585
GBP 0.832524
GEL 2.883571
GGP 0.830585
GHS 16.7185
GIP 0.830585
GMD 74.71233
GNF 9078.051459
GTQ 8.13025
GYD 220.338958
HKD 8.189863
HNL 26.613518
HRK 7.506205
HTG 138.346648
HUF 411.186809
IDR 16734.714279
ILS 3.929639
IMP 0.830585
INR 88.911049
IQD 1379.588093
IRR 44293.214291
ISK 145.520299
JEP 0.830585
JMD 166.933965
JOD 0.746386
JPY 162.676061
KES 136.007134
KGS 91.02957
KHR 4249.68174
KMF 491.94202
KPW 947.053999
KRW 1471.222726
KWD 0.323672
KYD 0.877684
KZT 523.167824
LAK 23125.51255
LBP 94319.785398
LKR 306.411046
LRD 190.622024
LSL 19.101997
LTL 3.107117
LVL 0.636515
LYD 5.138732
MAD 10.521031
MDL 19.167154
MGA 4930.189594
MKD 61.546561
MMK 3417.773046
MNT 3575.656436
MOP 8.443666
MRU 41.866002
MUR 48.839087
MVR 16.268296
MWK 1826.195708
MXN 21.380416
MYR 4.698412
MZN 67.293799
NAD 19.101997
NGN 1768.455747
NIO 38.755022
NOK 11.613586
NPR 142.154623
NZD 1.792324
OMR 0.40513
PAB 1.053101
PEN 3.996674
PGK 4.239684
PHP 62.126243
PKR 292.773138
PLN 4.342422
PYG 8247.914831
QAR 3.840515
RON 4.977085
RSD 117.020141
RUB 106.281009
RWF 1452.315514
SAR 3.95054
SBD 8.79238
SCR 14.332083
SDG 632.944958
SEK 11.610939
SGD 1.413951
SHP 0.830585
SLE 23.75528
SLL 22065.84631
SOS 601.88026
SRD 37.282669
STD 21780.126598
SVC 9.214882
SYP 2643.891613
SZL 19.091139
THB 36.458458
TJS 11.216013
TMT 3.682989
TND 3.324243
TOP 2.464553
TRY 36.27081
TTD 7.130433
TWD 34.270209
TZS 2791.031424
UAH 43.426878
UGX 3886.514989
USD 1.052283
UYU 45.021709
UZS 13526.469111
VES 48.861031
VND 26751.65603
VUV 124.929112
WST 2.937543
XAF 654.521833
XAG 0.033884
XAU 0.000395
XCD 2.843846
XDR 0.801343
XOF 654.521833
XPF 119.331742
YER 262.991742
ZAR 19.064031
ZMK 9471.810193
ZMW 29.146091
ZWL 338.834589
  • CMSC

    0.1200

    24.64

    +0.49%

  • RIO

    -0.3200

    62.07

    -0.52%

  • SCS

    0.0750

    13.145

    +0.57%

  • NGG

    -0.4400

    62.83

    -0.7%

  • RBGPF

    -0.5000

    59.69

    -0.84%

  • RYCEF

    0.1900

    6.8

    +2.79%

  • BCE

    -0.4900

    26.51

    -1.85%

  • BTI

    -0.1650

    36.915

    -0.45%

  • GSK

    -0.1100

    33.24

    -0.33%

  • CMSD

    0.0890

    24.349

    +0.37%

  • BP

    0.2050

    29.285

    +0.7%

  • RELX

    0.3300

    45.44

    +0.73%

  • AZN

    0.4350

    63.635

    +0.68%

  • VOD

    -0.1250

    8.815

    -1.42%

  • BCC

    1.7700

    139.18

    +1.27%

  • JRI

    0.0200

    13.25

    +0.15%

An overview of NASA's Artemis 1 mission to the Moon
An overview of NASA's Artemis 1 mission to the Moon / Photo: CHANDAN KHANNA - AFP/File

An overview of NASA's Artemis 1 mission to the Moon

NASA's Artemis 1 mission, scheduled to take off on Monday, is a 42-day voyage beyond the far side of the Moon and back.

Text size:

The meticulously choreographed uncrewed flight should yield spectacular images as well as valuable scientific data.

- Blastoff -

The giant Space Launch System rocket will make its maiden flight from Launch Complex 39B at Kennedy Space Center in Florida.

Its four RS-25 engines, with two white boosters on either side, will produce 8.8 million pounds (39 meganewtons) of thrust -- 15 percent more than the Apollo program's Saturn V rocket.

After two minutes, the thrusters will fall back into the Atlantic Ocean.

After eight minutes, the core stage, orange in color, will fall away in turn, leaving the Orion crew capsule attached to the interim cryogenic propulsion stage.

This stage will circle the Earth once, put Orion on course for the Moon, and drop away around 90 minutes after takeoff.

- Trajectory -

All that remains is Orion, which will fly astronauts in the future and is powered by a service module built by the European Space Agency.

It will take several days to reach the Moon, flying around 60 miles (100 kilometers) at closest approach.

"It's going to be spectacular. We'll be holding our breath," said mission flight director Rick LaBrode.

The capsule will fire its engines to get to a distant retrograde orbit (DRO) 40,000 miles beyond the Moon, a distance record for a spacecraft rated to carry humans.

"Distant" relates to high altitude, while "retrograde" refers to the fact Orion will go around the Moon the opposite direction to the Moon's orbit around the Earth.

DRO is a stable orbit because objects are balanced between the gravitational pulls of two large masses.

After passing by the Moon to take advantage of its gravitational assistance, Orion will begin the return journey.

- Journey home -

The mission's primary objective is to test the capsule's heat shield, the largest ever built, 16 feet (five meters) in diameter.

On its return to the Earth's atmosphere, it will have to withstand a speed of 25,000 miles per hour and a temperature of 5,000 degrees Fahrenheit (2,760 degrees Celsius).

Slowed by a series of parachutes until it is traveling at less than 20 miles per hour, Orion will splashdown off the coast of San Diego in the Pacific.

Divers will attach cables to tow it in a few hours to a US Navy ship.

- The crew -

The capsule will carry a mannequin called "Moonikin Campos," named after a legendary NASA engineer who saved Apollo 13, in the commander's seat, wearing the agency's brand new uniform.

Campos will be equipped with sensors to record acceleration and vibrations, and will also be accompanied by two other dummies: Helga and Zohar, who are made of materials designed to mimic bones and organs.

One will wear a radiation vest while the other won't, to test the impacts of the radiation in deep space.

- What will we see? -

Several on-board cameras will make it possible to follow the entire journey from multiple angles, including from the point of view of a passenger in the capsule.

Cameras at the end of the solar panels will take selfies of the craft with the Moon and Earth in the background.

- CubeSats -

Life will imitate art with a technology demonstration called Callisto, inspired by the Starship Enterprise's talking computer.

It is an improved version of Amazon's Alexa voice assistant, which will be requested from the control center to adjust the light in the capsule, or to read flight data.

The idea is to make life easier for astronauts in the future.

In addition, a payload of 10 CubeSats, shoebox-sized microsatellites, will be deployed by the rocket's upper stage.

They have numerous goals: studying an asteroid, examining the effect of radiation on living organisms, searching for water on the Moon.

These projects, carried out independently by international companies or researchers, take advantage of the rare opportunity of a launch into deep space.

A.El-Nayady--DT