Dubai Telegraph - Webb begins hunt for the first stars and habitable worlds

EUR -
AED 3.938479
AFN 73.284283
ALL 98.19234
AMD 417.267449
ANG 1.943348
AOA 978.447316
ARS 1071.53141
AUD 1.629089
AWG 1.930079
AZN 1.82711
BAM 1.955647
BBD 2.17713
BDT 128.849948
BGN 1.955747
BHD 0.406468
BIF 3183.551653
BMD 1.072266
BND 1.425189
BOB 7.467417
BRL 6.152562
BSD 1.078316
BTN 90.972903
BWP 14.300884
BYN 3.528725
BYR 21016.42052
BZD 2.17343
CAD 1.49386
CDF 3073.115756
CHF 0.939162
CLF 0.03726
CLP 1028.119797
CNY 7.698019
CNH 7.63378
COP 4640.937963
CRC 551.556973
CUC 1.072266
CUP 28.415058
CVE 110.256399
CZK 25.259812
DJF 192.015021
DKK 7.459869
DOP 64.934934
DZD 142.958848
EGP 52.835878
ERN 16.083995
ETB 133.503285
FJD 2.399951
FKP 0.820465
GBP 0.830088
GEL 2.916983
GGP 0.820465
GHS 17.683621
GIP 0.820465
GMD 76.671173
GNF 9295.27488
GTQ 8.33535
GYD 225.592402
HKD 8.336174
HNL 27.205878
HRK 7.386875
HTG 141.888931
HUF 407.236454
IDR 16786.168917
ILS 4.020796
IMP 0.820465
INR 90.481213
IQD 1412.489812
IRR 45134.375558
ISK 148.766647
JEP 0.820465
JMD 171.076654
JOD 0.760348
JPY 163.686863
KES 139.08915
KGS 92.433433
KHR 4378.658423
KMF 493.644665
KPW 965.039476
KRW 1499.246878
KWD 0.328832
KYD 0.89853
KZT 530.808592
LAK 23665.153893
LBP 96559.167469
LKR 315.465391
LRD 204.33406
LSL 18.869628
LTL 3.166124
LVL 0.648604
LYD 5.232592
MAD 10.648369
MDL 19.338491
MGA 4988.610841
MKD 61.610194
MMK 3482.679288
MNT 3643.561097
MOP 8.633826
MRU 42.957649
MUR 49.75717
MVR 16.566921
MWK 1869.754141
MXN 21.634265
MYR 4.699212
MZN 68.521819
NAD 18.869628
NGN 1788.626462
NIO 39.676905
NOK 11.794827
NPR 145.556645
NZD 1.797446
OMR 0.412628
PAB 1.078316
PEN 4.044584
PGK 4.328662
PHP 62.679371
PKR 299.424042
PLN 4.325898
PYG 8431.342275
QAR 3.931893
RON 4.977143
RSD 117.04113
RUB 104.99181
RWF 1478.084695
SAR 4.02742
SBD 8.943509
SCR 14.390377
SDG 644.972153
SEK 11.594849
SGD 1.4214
SHP 0.820465
SLE 24.501684
SLL 22484.885861
SOS 616.251927
SRD 37.497551
STD 22193.748611
SVC 9.435264
SYP 2694.101668
SZL 18.864528
THB 36.687634
TJS 11.462006
TMT 3.763655
TND 3.347839
TOP 2.511359
TRY 36.822021
TTD 7.327428
TWD 34.580984
TZS 2878.975413
UAH 44.514627
UGX 3946.692121
USD 1.072266
UYU 45.046486
UZS 13787.924411
VEF 3884341.194834
VES 47.874003
VND 27101.532073
VUV 127.301648
WST 3.003615
XAF 655.905833
XAG 0.031788
XAU 0.000394
XCD 2.897854
XDR 0.808437
XOF 655.905833
XPF 119.331742
YER 267.878982
ZAR 19.79817
ZMK 9651.687743
ZMW 29.35571
ZWL 345.269328
  • RBGPF

    61.4000

    61.4

    +100%

  • SCS

    0.0600

    13.14

    +0.46%

  • RELX

    0.3200

    47.98

    +0.67%

  • NGG

    -0.3600

    63.94

    -0.56%

  • GSK

    -0.3700

    36.29

    -1.02%

  • CMSC

    0.1600

    24.84

    +0.64%

  • BTI

    -0.0100

    35.39

    -0.03%

  • RIO

    -3.0400

    64.43

    -4.72%

  • AZN

    -0.2000

    64.49

    -0.31%

  • BP

    -0.8800

    28.93

    -3.04%

  • BCE

    0.3000

    28.37

    +1.06%

  • CMSD

    0.2350

    25.125

    +0.94%

  • JRI

    0.1600

    13.53

    +1.18%

  • BCC

    1.4700

    142.32

    +1.03%

  • RYCEF

    0.0100

    7.15

    +0.14%

  • VOD

    -0.0100

    9.31

    -0.11%

Webb begins hunt for the first stars and habitable worlds
Webb begins hunt for the first stars and habitable worlds / Photo: Jonathan WALTER - AFP

Webb begins hunt for the first stars and habitable worlds

The first stunning images from the James Webb Space Telescope were revealed this week, but its journey of cosmic discovery has only just begun.

Text size:

Here is a look at two early projects that will take advantage of the orbiting observatory's powerful instruments.

- The first stars and galaxies -

One of the great promises of the telescope is its ability to study the earliest phase of cosmic history, shortly after the Big Bang 13.8 billion years ago.

The more distant objects are from us, the longer it takes for their light to reach us, and so to gaze back into the distant universe is to look back in the deep past.

"We're going to look back into that earliest time to see the first galaxies that formed in the history of the universe," explained Space Telescope Science Institute astronomer Dan Coe, who specializes in the early universe.

Astronomers have so far gone back 97 percent of the way back to the Big Bang, but "we just see these tiny red specks when we look at these galaxies that are so far away."

"With Webb, we'll finally be able to see inside these galaxies and see what they're made of."

While today's galaxies are shaped like spirals or ellipticals, the earliest building blocks were "clumpy and irregular," and Webb should reveal older redder stars in them, more like our Sun, that were invisible to the Hubble Space Telescope.

Coe has two Webb projects coming up -- observing one of the most distant galaxies known, MACS0647-JD, which he found in 2013, and Earendel, the most distant star ever detected, which was found in March of this year.

While the public has been enticed by Webb's stunning pictures, which are shot in infrared because light from the far cosmos has stretched into these wavelengths as the universe expanded, scientists are equally keen on spectroscopy.

Analyzing the light spectrum of an object reveals its properties, including temperature, mass, and chemical composition -- effectively, forensic science for astronomy.

Science doesn't yet know what the earliest stars, which probably started forming 100 million years after the Big Bang, will look like.

"We might see things that are very different," said Coe -- so-called "Population III" stars that are theorized to have been much more massive than our own Sun, and "pristine," meaning they were made up solely of hydrogen and helium.

These eventually exploded in supernovae, contributing to the cosmic chemical enrichment that created the stars and planets we see today.

Some are doubtful these pristine Population III stars will ever be found -- but that won't stop the astronomical community from trying.

- Anyone out there? -

Astronomers won time on Webb based on a competitive selection process, open to all regardless of how advanced they are in their careers.

Olivia Lim, a doctoral student at the University of Montreal, is only 25 years old. "I was not even born when people started talking about this telescope," she told AFP.

Her goal: to observe the roughly Earth-sized rocky planets revolving around a star named Trappist-1. They are so close to each other that from the surface of one, you could see the others appearing clearly in the sky.

"The Trappist-1 system is unique," explains Lim. "Almost all of the conditions there are favorable for the search for life outside our solar system."

In addition, three of Trappist-1's seven planets are in the Goldilocks "habitable zone," neither too close nor too far from their star, permitting the right temperatures for liquid water to exist on their surface.

The system is "only" 39 light year away -- and we can see the planets transit in front of their star.

This makes it possible to observe the drop in luminosity that crossing the star produces, and use spectroscopy to infer planetary properties.

It's not yet known if these planets have an atmosphere, but that's what Lim is looking to find out. If so, the light passing through these atmospheres will be "filtered" through the molecules it contains, leaving signatures for Webb.

The jackpot for her would be to detect the presence of water vapor, carbon dioxide and ozone.

Trappist-1 is such a prime target that several other science teams have also been granted time to observe them.

Finding traces of life there, if they exist, will still take time, according to Lim. But "everything we're doing this year are really important steps to get to that ultimate goal."

I.Menon--DT