Dubai Telegraph - Webb Telescope: What will scientists learn?

EUR -
AED 4.100124
AFN 77.023136
ALL 99.457679
AMD 432.836705
ANG 2.014756
AOA 1036.466317
ARS 1074.772809
AUD 1.636724
AWG 2.009299
AZN 1.901859
BAM 1.957294
BBD 2.257143
BDT 133.593161
BGN 1.965373
BHD 0.420723
BIF 3230.505618
BMD 1.116277
BND 1.443515
BOB 7.724965
BRL 6.057585
BSD 1.117963
BTN 93.495991
BWP 14.707579
BYN 3.658525
BYR 21879.029062
BZD 2.25333
CAD 1.513538
CDF 3204.831463
CHF 0.946042
CLF 0.037658
CLP 1039.097455
CNY 7.889862
CNH 7.893495
COP 4648.847165
CRC 579.077133
CUC 1.116277
CUP 29.58134
CVE 110.790423
CZK 25.098263
DJF 198.384891
DKK 7.459748
DOP 67.180993
DZD 147.625411
EGP 54.17231
ERN 16.744155
ETB 131.156505
FJD 2.455027
FKP 0.850111
GBP 0.840378
GEL 3.047549
GGP 0.850111
GHS 17.528318
GIP 0.850111
GMD 76.467701
GNF 9658.579884
GTQ 8.641673
GYD 233.812274
HKD 8.700096
HNL 27.851195
HRK 7.58958
HTG 147.323764
HUF 394.235591
IDR 16950.275441
ILS 4.213382
IMP 0.850111
INR 93.462187
IQD 1462.322861
IRR 46986.859872
ISK 152.293086
JEP 0.850111
JMD 175.634052
JOD 0.791103
JPY 159.175578
KES 143.999529
KGS 94.074221
KHR 4543.247411
KMF 492.669283
KPW 1004.648661
KRW 1483.163861
KWD 0.340375
KYD 0.931507
KZT 535.358661
LAK 24652.977075
LBP 99647.946206
LKR 340.292775
LRD 216.836745
LSL 19.534696
LTL 3.296076
LVL 0.675224
LYD 5.296699
MAD 10.82228
MDL 19.505703
MGA 5084.641843
MKD 61.663998
MMK 3625.62413
MNT 3793.109172
MOP 8.973344
MRU 44.332894
MUR 51.20327
MVR 17.145582
MWK 1937.857282
MXN 21.56086
MYR 4.69905
MZN 71.27423
NAD 19.540615
NGN 1806.028755
NIO 41.045521
NOK 11.826252
NPR 149.611531
NZD 1.789532
OMR 0.429734
PAB 1.117963
PEN 4.180434
PGK 4.369336
PHP 62.043233
PKR 310.430338
PLN 4.274504
PYG 8726.738818
QAR 4.063527
RON 4.974354
RSD 117.073997
RUB 102.909707
RWF 1498.043725
SAR 4.188876
SBD 9.272843
SCR 15.079716
SDG 671.446869
SEK 11.342379
SGD 1.44245
SHP 0.850111
SLE 25.503918
SLL 23407.764664
SOS 637.394488
SRD 33.324249
STD 23104.68
SVC 9.781466
SYP 2804.679362
SZL 19.520346
THB 36.991194
TJS 11.881938
TMT 3.906969
TND 3.375627
TOP 2.623025
TRY 38.039372
TTD 7.597948
TWD 35.643091
TZS 3041.230023
UAH 46.325958
UGX 4151.205575
USD 1.116277
UYU 45.925052
UZS 14215.787076
VEF 4043772.050025
VES 41.004421
VND 27438.088487
VUV 132.526647
WST 3.122743
XAF 656.48158
XAG 0.036259
XAU 0.000432
XCD 3.016794
XDR 0.82854
XOF 655.812014
XPF 119.331742
YER 279.432056
ZAR 19.65613
ZMK 10047.835808
ZMW 29.093075
ZWL 359.440736
  • RBGPF

    3.5000

    60.5

    +5.79%

  • CMSC

    0.0650

    25.12

    +0.26%

  • BCC

    7.6300

    144.69

    +5.27%

  • JRI

    -0.0400

    13.4

    -0.3%

  • CMSD

    0.0300

    25.01

    +0.12%

  • NGG

    -1.2200

    68.83

    -1.77%

  • BCE

    -0.4200

    35.19

    -1.19%

  • SCS

    -0.8000

    13.31

    -6.01%

  • RIO

    2.2700

    65.18

    +3.48%

  • GSK

    -0.8100

    41.62

    -1.95%

  • RYCEF

    0.4000

    6.95

    +5.76%

  • RELX

    0.7600

    48.13

    +1.58%

  • BTI

    -0.3100

    37.57

    -0.83%

  • VOD

    -0.1700

    10.06

    -1.69%

  • AZN

    0.3200

    78.9

    +0.41%

  • BP

    0.3300

    32.76

    +1.01%

Webb Telescope: What will scientists learn?
Webb Telescope: What will scientists learn? / Photo: Handout - NASA/AFP

Webb Telescope: What will scientists learn?

The James Webb Space Telescope's first images aren't just breathtaking -- they contain a wealth of scientific insights and clues that researchers are eager to pursue.

Text size:

Here are some of the things scientists now hope to learn.

- Into the deep -

Webb's first image, released Monday, delivered the deepest and sharpest infrared image of the distant universe so far, "Webb's First Deep Field."

The white circles and ellipses are from the galaxy cluster in the foreground called SMACS 0723, as it appeared more than 4.6 billion years ago -- roughly when our Sun formed too.

The reddish arcs are from light from ancient galaxies that has traveled more than 13 billion years, bending around the foreground cluster, which acts as a gravitational lens.

NASA astrophysicist Amber Straughn said she was struck by "the astounding detail that you can see in some of these galaxies."

"They just pop out! There is so much more detail, it's like seeing in high-def."

Plus, added NASA astrophysicist Jane Rigby, the image can teach us more about mysterious dark matter, which is thought to comprise 85 percent of matter in the universe -- and is the main cause of the cosmic magnifying effect.

The composite image, which required a 12.5 hour exposure time, is considered a practice run. Given longer exposure time, Webb should break all-time distance records by gazing back to the first few hundred million years after the Big Bang, 13.8 billion years ago.

- The hunt for habitable planets -

Webb captured the signature of water, along with previously undetected evidence of clouds and haze, in the atmosphere surrounding a hot, puffy gas giant planet called WASP-96 b that orbits a distant star like our Sun.

The telescope achieved this by analyzing starlight filtered through the planet's atmosphere as it moves across the star, to the unfiltered starlight detected when the planet is beside the star -- a technique called spectroscopy that no other instrument can do at the same detail.

WASP-96 b is one of more than 5,000 confirmed exoplanets in the Milky Way. But what really excites astronomers is the prospect of pointing Webb at smaller, rocky worlds, like our own Earth, to search for atmospheres and bodies of liquid water that could support life.

- Death of a star -

Webb's cameras captured a stellar graveyard, in the Southern Ring Nebula, revealing the dim, dying star at its center in clear detail for the first time, and showing that it is cloaked in dust.

Astronomers will use Webb to delve deeper into specifics about "planetary nebulae" like these, which spew out clouds of gas and dust.

These nebulae will eventually also lead to rebirth.

The gas and cloud ejection stops after some tens of thousands of years, and once the material is scattered in space, new stars can form.

- A cosmic dance -

Stephan's Quintet, a grouping of five galaxies, is located in the constellation Pegasus.

Webb was able to pierce through the clouds of dust and gas at the center of the galaxy to glean new insights, such as the velocity and composition of outflows of gas near its supermassive black hole.

Four of the galaxies are close together and locked in a "cosmic dance" of repeated close encounters.

By studying it, "you learn how the galaxies collide and merge," said cosmologist John Mather, adding our own Milky Way was probably assembled out of 1,000 smaller galaxies.

Understanding the black hole better will also give us greater insights into Sagittarius A*, the black hole at the center of the Milky Way, which is shrouded in dust.

- Stellar nursey -

Perhaps the most beautiful image is that of the "Cosmic Cliffs" from the Carina Nebula, a stellar nursery.

Here, for the first time, Webb has revealed previously invisible regions of star formation, which will tell us more about why stars form with certain mass, and what determines the number that form in a certain region.

They may look like mountains, but the tallest of the craggy peaks are seven light years high, and the yellow structures are made from huge hydrocarbon molecules, said Webb project scientist Klaus Pontoppidan.

In addition to being the stuff of stars, nebular material could also be where we come from.

"This may be the way that the universe is transporting carbon, the carbon that we're made of, to planets that may be habitable for life," he said.

- The great unknown -

Perhaps most exciting of all is journeying into the unknown, said Straughn.

Hubble played a key role in discovering that dark energy is causing the universe to expand at an ever-growing rate, "so it's hard to imagine what we might learn with this 100 times more powerful instrument."

A.El-Nayady--DT