Dubai Telegraph - Webb telescope spots signs of universe's biggest stars

EUR -
AED 3.826681
AFN 70.961758
ALL 98.138602
AMD 405.652886
ANG 1.877182
AOA 951.190259
ARS 1045.720247
AUD 1.602814
AWG 1.877897
AZN 1.775245
BAM 1.955573
BBD 2.102956
BDT 124.465544
BGN 1.955294
BHD 0.392554
BIF 3076.642669
BMD 1.041829
BND 1.403837
BOB 7.197164
BRL 6.043693
BSD 1.041579
BTN 87.914489
BWP 14.229347
BYN 3.408604
BYR 20419.848375
BZD 2.099456
CAD 1.456529
CDF 2991.091432
CHF 0.930957
CLF 0.036923
CLP 1018.83097
CNY 7.54601
CNH 7.562783
COP 4573.368835
CRC 530.538382
CUC 1.041829
CUP 27.608468
CVE 110.252195
CZK 25.343745
DJF 185.478458
DKK 7.457729
DOP 62.772709
DZD 139.835759
EGP 51.726992
ERN 15.627435
ETB 127.508391
FJD 2.371151
FKP 0.822333
GBP 0.831435
GEL 2.855018
GGP 0.822333
GHS 16.456089
GIP 0.822333
GMD 73.970229
GNF 8977.957272
GTQ 8.040066
GYD 217.904692
HKD 8.109446
HNL 26.320943
HRK 7.431636
HTG 136.72412
HUF 411.522823
IDR 16610.452733
ILS 3.863061
IMP 0.822333
INR 87.968134
IQD 1364.44153
IRR 43834.955489
ISK 145.523076
JEP 0.822333
JMD 165.930728
JOD 0.738765
JPY 161.242873
KES 134.884334
KGS 90.122166
KHR 4193.512952
KMF 492.268155
KPW 937.645704
KRW 1463.259646
KWD 0.320727
KYD 0.867999
KZT 520.059599
LAK 22878.342838
LBP 93271.167197
LKR 303.144792
LRD 187.998165
LSL 18.795317
LTL 3.076251
LVL 0.630192
LYD 5.086409
MAD 10.478083
MDL 18.997794
MGA 4861.435378
MKD 61.522855
MMK 3383.819949
MNT 3540.134882
MOP 8.35093
MRU 41.443187
MUR 48.810083
MVR 16.10707
MWK 1806.090235
MXN 21.281613
MYR 4.654932
MZN 66.583684
NAD 18.795317
NGN 1767.675143
NIO 38.325549
NOK 11.531328
NPR 140.663663
NZD 1.78585
OMR 0.400943
PAB 1.041579
PEN 3.949541
PGK 4.193513
PHP 61.404399
PKR 289.239507
PLN 4.337676
PYG 8131.055634
QAR 3.798559
RON 4.978071
RSD 116.991412
RUB 108.671879
RWF 1421.834864
SAR 3.911473
SBD 8.734231
SCR 14.272055
SDG 626.663972
SEK 11.501974
SGD 1.402931
SHP 0.822333
SLE 23.68116
SLL 21846.638123
SOS 595.230868
SRD 36.978718
STD 21563.75683
SVC 9.113941
SYP 2617.626467
SZL 18.788818
THB 35.922648
TJS 11.092512
TMT 3.646401
TND 3.309016
TOP 2.440072
TRY 36.018972
TTD 7.074178
TWD 33.946439
TZS 2770.578216
UAH 43.089995
UGX 3848.553017
USD 1.041829
UYU 44.294855
UZS 13362.448044
VES 48.506662
VND 26482.251319
VUV 123.688032
WST 2.90836
XAF 655.880824
XAG 0.033274
XAU 0.000384
XCD 2.815595
XDR 0.792308
XOF 655.880824
XPF 119.331742
YER 260.379151
ZAR 18.862746
ZMK 9377.71492
ZMW 28.772658
ZWL 335.468513
  • GSK

    0.2600

    33.96

    +0.77%

  • RBGPF

    59.2400

    59.24

    +100%

  • BCC

    3.4200

    143.78

    +2.38%

  • RIO

    -0.2200

    62.35

    -0.35%

  • NGG

    1.0296

    63.11

    +1.63%

  • SCS

    0.2300

    13.27

    +1.73%

  • CMSD

    0.0150

    24.46

    +0.06%

  • CMSC

    0.0320

    24.672

    +0.13%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • BTI

    0.4000

    37.38

    +1.07%

  • AZN

    1.3700

    65.63

    +2.09%

  • RELX

    0.9900

    46.75

    +2.12%

  • BCE

    0.0900

    26.77

    +0.34%

  • VOD

    0.1323

    8.73

    +1.52%

  • JRI

    -0.0200

    13.21

    -0.15%

  • BP

    0.2000

    29.72

    +0.67%

Webb telescope spots signs of universe's biggest stars
Webb telescope spots signs of universe's biggest stars / Photo: - - ESA/HUBBLE/AFP/File

Webb telescope spots signs of universe's biggest stars

The James Webb Space Telescope has helped astronomers detect the first chemical signs of supermassive stars, "celestial monsters" blazing with the brightness of millions of Suns in the early universe.

Text size:

So far, the largest stars observed anywhere have a mass of around 300 times that of our Sun.

But the supermassive star described in a new study has an estimated mass of 5,000 to 10,000 Suns.

The team of European researchers behind the study previously theorised the existence of supermassive stars in 2018 in an attempt to explain one of the great mysteries of astronomy.

For decades, astronomers have been baffled by the huge diversity in the composition of different stars packed into what are called globular clusters.

The clusters, which are mostly very old, can contain millions of stars in a relatively small space.

Advances in astronomy have revealed an increasing number of globular clusters, which are thought to be a missing link between the universe's first stars and first galaxies.

Our Milky Way galaxy, which has more than 100 billion stars, has around 180 globular clusters.

But the question remains: Why do the stars in these clusters have such a variety of chemical elements, despite presumably all being born around the same time, from the same cloud of gas?

- Rampaging 'seed star' -

Many of the stars have elements that would require colossal amounts of heat to produce, such as aluminium which would need a temperature of up to 70 million degrees Celsius.

That is far above the temperature that the stars are thought to get up to at their core, around the 15-20 million Celsius mark which is similar to the Sun.

So the researchers came up with a possible solution: a rampaging supermassive star shooting out chemical "pollution".

They theorise that these huge stars are born from successive collisions in the tightly packed globular clusters.

Corinne Charbonnel, an astrophysicist at the University of Geneva and lead author of the study, told AFP that "a kind of seed star would engulf more and more stars".

It would eventually become "like a huge nuclear reactor, continuously feeding on matter, which will eject out a lot of it," she added.

This discarded "pollution" will in turn feed young forming stars, giving them a greater variety of chemicals the closer they are to the supermassive star, she added.

But the team still needed observations to back up their theory.

- 'Like finding a bone' -

They found them in the galaxy GN-z11, which is more than 13 billion light years away -- the light we see from it comes from just 440 million years after the Big Bang.

It was discovered by the Hubble Space Telescope in 2015, and until recently held the record of oldest observed galaxy.

This made it an obvious early target for Hubble's successor as most powerful space telescope, the James Webb, which started releasing its first observations last year.

Webb offered up two new clues: the incredible density of stars in globular clusters and -- most crucially -- the presence of lots of nitrogen.

It takes truly extreme temperatures to make nitrogen, which the researchers believe could only be produced by a supermassive star.

"Thanks to the data collected by the James Webb Space Telescope, we believe we have found a first clue of the presence of these extraordinary stars," Charbonnel said in a statement, which also called the stars "celestial monsters".

If the team's theory was previously "a sort of footprint of our supermassive star, this is a bit like finding a bone," Charbonnel said.

"We are speculating about the head of the beast behind all this," she added.

But there is little hope of ever directly observing this beast.

The scientists estimate that the life expectancy of supermassive stars is only around two million years -- a blink of an eye in the cosmic time scale.

However they suspect that globular clusters were around until roughly two billion years ago, and they could yet reveal more traces of the supermassive stars they may have once hosted.

The study was published in the journal Astronomy and Astrophysics this month.

C.Akbar--DT