Dubai Telegraph - Scientists develop mobile printer for mRNA vaccine patches

EUR -
AED 3.826681
AFN 70.961758
ALL 98.138602
AMD 405.652886
ANG 1.877182
AOA 951.190259
ARS 1045.720247
AUD 1.602814
AWG 1.877897
AZN 1.775245
BAM 1.955573
BBD 2.102956
BDT 124.465544
BGN 1.955294
BHD 0.392554
BIF 3076.642669
BMD 1.041829
BND 1.403837
BOB 7.197164
BRL 6.043693
BSD 1.041579
BTN 87.914489
BWP 14.229347
BYN 3.408604
BYR 20419.848375
BZD 2.099456
CAD 1.456529
CDF 2991.091432
CHF 0.930957
CLF 0.036923
CLP 1018.83097
CNY 7.54601
CNH 7.562783
COP 4573.368835
CRC 530.538382
CUC 1.041829
CUP 27.608468
CVE 110.252195
CZK 25.343745
DJF 185.478458
DKK 7.457729
DOP 62.772709
DZD 139.835759
EGP 51.726992
ERN 15.627435
ETB 127.508391
FJD 2.371151
FKP 0.822333
GBP 0.831435
GEL 2.855018
GGP 0.822333
GHS 16.456089
GIP 0.822333
GMD 73.970229
GNF 8977.957272
GTQ 8.040066
GYD 217.904692
HKD 8.109446
HNL 26.320943
HRK 7.431636
HTG 136.72412
HUF 411.522823
IDR 16610.452733
ILS 3.863061
IMP 0.822333
INR 87.968134
IQD 1364.44153
IRR 43834.955489
ISK 145.523076
JEP 0.822333
JMD 165.930728
JOD 0.738765
JPY 161.242873
KES 134.884334
KGS 90.122166
KHR 4193.512952
KMF 492.268155
KPW 937.645704
KRW 1463.259646
KWD 0.320727
KYD 0.867999
KZT 520.059599
LAK 22878.342838
LBP 93271.167197
LKR 303.144792
LRD 187.998165
LSL 18.795317
LTL 3.076251
LVL 0.630192
LYD 5.086409
MAD 10.478083
MDL 18.997794
MGA 4861.435378
MKD 61.522855
MMK 3383.819949
MNT 3540.134882
MOP 8.35093
MRU 41.443187
MUR 48.810083
MVR 16.10707
MWK 1806.090235
MXN 21.281613
MYR 4.654932
MZN 66.583684
NAD 18.795317
NGN 1767.675143
NIO 38.325549
NOK 11.531328
NPR 140.663663
NZD 1.78585
OMR 0.400943
PAB 1.041579
PEN 3.949541
PGK 4.193513
PHP 61.404399
PKR 289.239507
PLN 4.337676
PYG 8131.055634
QAR 3.798559
RON 4.978071
RSD 116.991412
RUB 108.671879
RWF 1421.834864
SAR 3.911473
SBD 8.734231
SCR 14.272055
SDG 626.663972
SEK 11.501974
SGD 1.402931
SHP 0.822333
SLE 23.68116
SLL 21846.638123
SOS 595.230868
SRD 36.978718
STD 21563.75683
SVC 9.113941
SYP 2617.626467
SZL 18.788818
THB 35.922648
TJS 11.092512
TMT 3.646401
TND 3.309016
TOP 2.440072
TRY 36.018972
TTD 7.074178
TWD 33.946439
TZS 2770.578216
UAH 43.089995
UGX 3848.553017
USD 1.041829
UYU 44.294855
UZS 13362.448044
VES 48.506662
VND 26482.251319
VUV 123.688032
WST 2.90836
XAF 655.880824
XAG 0.033274
XAU 0.000384
XCD 2.815595
XDR 0.792308
XOF 655.880824
XPF 119.331742
YER 260.379151
ZAR 18.862746
ZMK 9377.71492
ZMW 28.772658
ZWL 335.468513
  • BCC

    3.4200

    143.78

    +2.38%

  • RBGPF

    59.2400

    59.24

    +100%

  • NGG

    1.0296

    63.11

    +1.63%

  • SCS

    0.2300

    13.27

    +1.73%

  • GSK

    0.2600

    33.96

    +0.77%

  • AZN

    1.3700

    65.63

    +2.09%

  • RIO

    -0.2200

    62.35

    -0.35%

  • VOD

    0.1323

    8.73

    +1.52%

  • CMSC

    0.0320

    24.672

    +0.13%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • RELX

    0.9900

    46.75

    +2.12%

  • BTI

    0.4000

    37.38

    +1.07%

  • BCE

    0.0900

    26.77

    +0.34%

  • BP

    0.2000

    29.72

    +0.67%

  • JRI

    -0.0200

    13.21

    -0.15%

  • CMSD

    0.0150

    24.46

    +0.06%

Scientists develop mobile printer for mRNA vaccine patches
Scientists develop mobile printer for mRNA vaccine patches / Photo: SPENCER PLATT - GETTY IMAGES NORTH AMERICA/AFP

Scientists develop mobile printer for mRNA vaccine patches

Scientists said Monday they have developed the first mobile printer that can produce thumbnail-sized patches able to deliver mRNA Covid vaccines, hoping the tabletop device will help immunise people in remote regions.

Text size:

While many hurdles remain and the 3D printer is likely years away from becoming available, experts hailed the "exciting" finding.

The device prints two-centimetre-wide patches which each contain hundreds of tiny needles that administer a vaccine when pressed against the skin.

These "microneedle patches" offer a range of advantages over traditional jabs in the arm, including that they can be self-administered, are relatively painless, could be more palatable to the vaccine-hesitant and can be stored at room temperature for long periods of time.

The popular mRNA Covid-19 vaccines from Pfizer and Moderna need to be refrigerated, which has caused distribution complications -- particularly in developing countries that have condemned the unequal distribution of doses during the pandemic.

The new printer was tested with the Pfizer and Moderna jabs, according to a study in the journal Nature Biotechnology, but the goal of the international team of researchers behind it is for it to be adapted to whatever vaccines are needed.

Robert Langer, co-founder of Moderna and one of the study's authors, told AFP that he hoped the printer could be used for "the next Covid, or whatever crisis occurs".

Ana Jaklenec, a study author also from the Massachusetts Institute of Technology, said the printer could be sent to areas such as refugee camps or remote villages to "quickly immunise the local population," in the event of a fresh outbreak of a disease like Ebola.

- Vacuum-sealed -

Microneedle patch vaccines are already under development for Covid and a range of other diseases, including polio, measles and rubella.

But the patches have long struggled to take off because producing them is an expensive, laborious process often involving large machines for centrifugation.

To shrink that process down, the researchers used a vacuum chamber to suck the printer "ink" into the bottom of their patch moulds, so it reaches the points of the tiny needles.

The vaccine ink is made up of lipid nanoparticles containing mRNA vaccine molecules, as well as a polymer similar to sugar water.

Once allowed to dry, the patches can be stored at room temperature for at least six months, the study found. The patches even survived a month at a balmy 37 degrees Celsius (99 Fahrenheit).

Mice which were given a vaccine patch produced a similar level of antibody response to others immunised via a traditional injection, the study said.

The printed patches are currently being tested on primates, which if successful would lead to trials on humans.

- 'A real breakthrough'? -

The printer can make 100 patches in 48 hours. But modelling suggested that -- with improvements -- it could potentially print thousands a day, the researchers said.

"And you can have more than one printer," Langer added.

Joseph DeSimone, a chemist at Stanford University not involved in the research, said that "this work is particularly exciting as it realises the ability to produce vaccines on demand".

"With the possibility of scaling up vaccine manufacturing and improved stability at higher temperatures, mobile vaccine printers can facilitate widespread access to RNA vaccines," said DeSimone, who has invented his own microneedle patches.

Antoine Flahault, director of the Institute of Global Health at the University of Geneva, said that production and access to vaccines could be "transformed through such a printer".

"It might become a real breakthrough," he told AFP, while warning that this depended on approval and mass production, which could take years.

Darrick Carter, a biochemist and CEO of US biotech firm PAI Life Sciences, was less optimistic.

He said that the field of microneedle patches had "suffered for 30 years" because no one had yet been able to scale up manufacturing in a cost-effective way.

"Until someone figures out the manufacturing scale-up issues for microneedle patches they will remain niche products," he told AFP.

C.Masood--DT