Dubai Telegraph - Particle physics pushing cancer treatment boundaries

EUR -
AED 3.826681
AFN 70.961758
ALL 98.138602
AMD 405.652886
ANG 1.877182
AOA 951.190259
ARS 1045.840133
AUD 1.602814
AWG 1.877897
AZN 1.775245
BAM 1.955573
BBD 2.102956
BDT 124.465544
BGN 1.955633
BHD 0.392554
BIF 3076.642669
BMD 1.041829
BND 1.403837
BOB 7.197164
BRL 6.043693
BSD 1.041579
BTN 87.914489
BWP 14.229347
BYN 3.408604
BYR 20419.848375
BZD 2.099456
CAD 1.456529
CDF 2991.091432
CHF 0.930994
CLF 0.037254
CLP 1018.83097
CNY 7.54601
CNH 7.562783
COP 4573.368835
CRC 530.538382
CUC 1.041829
CUP 27.608468
CVE 110.252195
CZK 25.343745
DJF 185.478458
DKK 7.457729
DOP 62.772709
DZD 139.891631
EGP 51.726992
ERN 15.627435
ETB 127.508391
FJD 2.371151
FKP 0.822333
GBP 0.831468
GEL 2.855018
GGP 0.822333
GHS 16.456089
GIP 0.822333
GMD 73.970229
GNF 8977.957272
GTQ 8.040066
GYD 217.904692
HKD 8.109446
HNL 26.320943
HRK 7.431636
HTG 136.72412
HUF 411.522823
IDR 16610.452733
ILS 3.863061
IMP 0.822333
INR 87.968134
IQD 1364.44153
IRR 43834.955489
ISK 145.523076
JEP 0.822333
JMD 165.930728
JOD 0.738765
JPY 161.242873
KES 134.884334
KGS 90.122166
KHR 4193.512952
KMF 492.268155
KPW 937.645704
KRW 1463.259646
KWD 0.320727
KYD 0.867999
KZT 520.059599
LAK 22878.342838
LBP 93271.167197
LKR 303.144792
LRD 187.998165
LSL 18.795317
LTL 3.076251
LVL 0.630192
LYD 5.086409
MAD 10.478083
MDL 18.997794
MGA 4861.435378
MKD 61.522855
MMK 3383.819949
MNT 3540.134882
MOP 8.35093
MRU 41.443187
MUR 48.810083
MVR 16.10707
MWK 1806.090235
MXN 21.281613
MYR 4.654932
MZN 66.583684
NAD 18.795317
NGN 1767.675143
NIO 38.325549
NOK 11.531328
NPR 140.663663
NZD 1.78585
OMR 0.401144
PAB 1.041579
PEN 3.949541
PGK 4.193513
PHP 61.404399
PKR 289.239507
PLN 4.337676
PYG 8131.055634
QAR 3.798559
RON 4.978071
RSD 117.038068
RUB 108.671879
RWF 1421.834864
SAR 3.911473
SBD 8.734231
SCR 14.266343
SDG 626.663972
SEK 11.501974
SGD 1.402931
SHP 0.822333
SLE 23.68116
SLL 21846.638123
SOS 595.230868
SRD 36.978718
STD 21563.75683
SVC 9.113941
SYP 2617.626467
SZL 18.788818
THB 35.922648
TJS 11.092512
TMT 3.646401
TND 3.309016
TOP 2.440072
TRY 36.018972
TTD 7.074178
TWD 33.946439
TZS 2770.578216
UAH 43.089995
UGX 3848.553017
USD 1.041829
UYU 44.294855
UZS 13362.448044
VES 48.506662
VND 26482.251319
VUV 123.688032
WST 2.90836
XAF 655.880824
XAG 0.033274
XAU 0.000384
XCD 2.815595
XDR 0.792308
XOF 655.880824
XPF 119.331742
YER 260.379151
ZAR 18.862746
ZMK 9377.71492
ZMW 28.772658
ZWL 335.468513
  • SCS

    0.2300

    13.27

    +1.73%

  • BCC

    3.4200

    143.78

    +2.38%

  • VOD

    0.1323

    8.73

    +1.52%

  • GSK

    0.2600

    33.96

    +0.77%

  • RBGPF

    59.2400

    59.24

    +100%

  • RIO

    -0.2200

    62.35

    -0.35%

  • NGG

    1.0296

    63.11

    +1.63%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • CMSC

    0.0320

    24.672

    +0.13%

  • CMSD

    0.0150

    24.46

    +0.06%

  • BCE

    0.0900

    26.77

    +0.34%

  • AZN

    1.3700

    65.63

    +2.09%

  • RELX

    0.9900

    46.75

    +2.12%

  • JRI

    -0.0200

    13.21

    -0.15%

  • BP

    0.2000

    29.72

    +0.67%

  • BTI

    0.4000

    37.38

    +1.07%

Particle physics pushing cancer treatment boundaries
Particle physics pushing cancer treatment boundaries / Photo: Elodie LE MAOU - AFP

Particle physics pushing cancer treatment boundaries

Researchers at Europe's science lab CERN, who regularly use particle physics to challenge our understanding of the universe, are also applying their craft to upend the limits to cancer treatment.

Text size:

The physicists here are working with giant particle accelerators in search of ways to expand the reach of cancer radiation therapy, and take on hard-to-reach tumours that would otherwise have been fatal.

In one CERN lab, called CLEAR, facility coordinator Roberto Corsini stands next to a large, linear particle accelerator consisting of a 40-metre metal beam with tubes packed in aluminium foil at one end, and a vast array of measurement instruments and protruding colourful wires and cables.

The research here, he told AFP during a recent visit, is aimed at creating very high energy beams of electrons -- the negatively charged particles in the nucleus of an atom -- that eventually could help to combat cancerous cells more effectively.

They are researching a "technology to accelerate electrons to the energies that are needed to treat deep-seated tumours, which is above 100 million electron volts" (MeV), Corsini explained.

The idea is to use these very high energy electrons (VHEE) in combination with a new and promising treatment method called FLASH.

- Reducing 'collateral damage' -

This method entails delivering the radiation dose in a few hundred milliseconds, instead of minutes as is the current approach.

This has been shown to have the same destructive effect on the targeted tumour, but causes far less damage to the surrounding healthy tissue.

With traditional radiation therapy, "you do create some collateral damage," said Benjamin Fisch, a CERN knowledge transfer officer.

The effect of the brief but intense FLASH treatment, he told reporters, is to "reduce the toxicity to healthy tissue while still properly damaging cancer cells."

FLASH was first used on patients in 2018, based on currently available medical linear accelerators, linacs, that provide low-energy electron beams of around 6-10 MeV.

At such low energy though, the beams cannot penetrate deeply, meaning the highly-effective treatment has so far only been used on superficial tumours, found with skin cancer.

But the CERN physicists are now collaborating with the Lausanne University Hospital (CHUV) to build a machine for FLASH delivery that can accelerate electrons to 100 to 200 MeV, making it possible to use the method for much more hard-to-reach tumours.

- 'Game-changer' -

Deep-lying cancer tumours that can't be rooted out using surgery, chemotherapy or traditional radiation therapy are often today considered a death sentence.

"It is the ones which we don't cure at the moment which will be the targets," Professor Jean Bourhis, head of CHUV's radiology department, told AFP.

"For those particular cancers, which may be one third of the cancer cases, it could be a game-changer."

There are particular hopes that the FLASH method, with its far less harmful impact on surrounding tissue, could make it possible to go after tumours lodged in the brain or near other vital organs.

Bourhis said it might not relegate deaths from stubborn cancer tumours to the history books, "but at least there will be a new opportunity for more cures, if it works."

- 'Compact' -

One challenge is making the powerful accelerator compact enough to fit inside a hospital.

At CERN, a large gallery has been dedicated to housing the CLEAR accelerator, which requires 20 metres to push the electrons up to the required energy level -- and another 20 metres to condition, measure and deliver the beam.

But Corsini insisted that CERN had the know-how to "accelerate in a much more compact space".

The prototype being designed with CHUV will aim to do the same job with a machine that is 10 metres overall.

This "compact" solution, Corsini said, "reduces the cost, reduces power consumption and variability, and you can easily put it into a hospital without having to build a whole building."

Construction of the prototype is scheduled to begin next February, and patient clinical trials could begin in 2025, Bourhis said, "if everything goes smoothly".

A.Ragab--DT